

Mathematical Statistics

9/17/2007

- <u>1.(6%)</u> Let $\{X_n\}$ be a monotone decreasing sequence of non-negative random variables. Show that if $X_n \to_p 0$, then $X_n \to_{a.s.} 0$.
- 2.(14%)a(7%) If X and Y are independent random variables and $E|X|^a < \infty$ for some $a \ge 1$ and EY=0, then $E|X+Y|^a \ge E|X|^a$. b(7%) If X and Y are independent random variables and $E|X|^a < \infty$ for some $a \ge 1$ and $E|Y| < \infty$, then $E|X+Y|^a \ge E|X+EY|^a$.
- 3.(6%) Let X_1, X_2, X_3 be a random sample of size 3 from the Bernoulli distribution. Show that the statistic

$$S_1 = u(X_1, X_2, X_3) = X_1 + X_2 + X_3$$

is a sufficient statistic but that the statistic

$$S_2 = v(X_1, X_2, X_3) = X_1X_2 + X_3$$

is not a sufficient statistic.

- 4.(10%) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables having the exponential distribution $E(a, \theta)$, $a \in R$, and $\theta > 0$. Show that the smallest order statistic $X_{(1)}$ has the exponential distribution $E(a, \theta/n)$ and that $2\sum_{i=1}^{n} (X_i X_{(1)})/\theta$ has the chi-square distribution χ^2_{2n-2} .
- 5.(8%) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables having the Lebesgue p.d.f. $f_{\theta}(x) = (2\theta)^{-1} [I_{(0,\theta)}(x) + I_{(2\theta,3\theta)}(x)].$

Find a sufficient statistic for $\theta \in (0, \infty)$.

- 6.(20%) Consider the bivariate discrete distribution with probability mass function $p(x, y; \alpha, \beta, \gamma) = c \frac{\alpha^x \beta^y \gamma^{xy}}{x! y!}$, x=0, 1, 2, ..., y=0, 1, 2, ..., where $\alpha \ge 0$, $\beta \ge 0$, $0 \le \gamma \le 1$, and c is a normalizing constant. Consider a random sample of size n drawn from the bivariate distribution (X_1, Y_1) , (X_2, Y_2) , ..., (X_n, Y_n) . We want to construct a UMP test of size α of the null hypothesis that X and Y are independent against the alternative that X and Y are dependent. a(5%) Determine the conditional distribution of Y given X, show that it's Poisson.
 - b(3%) Give the hypotheses of interest in terms of the parameters.

- c(6%) Give the minimal sufficient statistics.
- d(6%) Conduct the test with a sample of n=2, $(x_1, y_1)=(1, 1)$, and $(x_2, y_2)=(3, 2)$.
- 7.(14%) Let X be a single observation from the discrete p.d.f.

 $f_{\theta}(x) = [x!(1-e^{-\theta})]^{-1}\theta^x e^{-\theta} I_{\{1,2,\ldots\}}(x), \text{ where } \theta > 0 \text{ is unknown. Consider the}$ estimation of $\theta/(1-e^{-\theta})$ under the squared error loss.

a(4%) Show that the estimator X is admissible.

b(5%) Show that X is not minimax unless $\sup_{\theta} R_T(\theta) = \infty$ for any estimator T=T(X).

c(5%) Find a loss function under which X is minimax and admissible.

- 8.(22%) Assume that the random variables, $Y \sim N(0, 1)$, $X \sim N(\mu, \sigma^2)$, where $\mu \in R$ and $\sigma^2 > 0$ are unknown parameters, are independent. Now we are interested in the probability $P_{\mu,\sigma}(X > Y)$, that is, we want to estimate and to test hypotheses concerning this quantity on the basis of a random sample of n observations on X.
 - a(5%) Show that $E_{\mu,\sigma}\Phi(X) = P_{\mu,\sigma}(X > Y)$, where Φ () denotes the CDF of N(0, 1).
 - b(4%) Show that $P_{\mu,\sigma}(X > Y) = \Phi(\frac{\mu}{\sqrt{1 + \sigma^2}})$.

c(5%) Obtain the UMVUE of $P_{\mu,\sigma}(X>Y)$ by using a conditional expectation

of the form
$$E_{\mu,\sigma}[g(X_1) \mid \tau_1(X_1,X_2,...,X_n) = t_1,\tau_2(X_1,X_2,...,X_n) = t_2]$$
, where

 τ_1 and τ_2 are the classical minimal sufficient statistics.

d(8%) Now derive the UMP size α test for the following hypotheses:

$$H_0: P_{\mu,\sigma}(X > Y) \le \frac{1}{2} \text{ versus } H_1: P_{\mu,\sigma}(X > Y) > \frac{1}{2}.$$